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It is well known that in the initial stage of a powerful pulse dis-
charge in a gas the discharge boundary moves with acceleration to-
wards the axis, In such a case Rayleigh-Taylor instability [1] may
play a significant part, In some experimental papers on the Z-pinch,
even before the moment of first constriction in fact, an instability of
the surface discharge with respect to pinch-type perturbations has
been detected with an instability increment which tums out to be ap-
proximately equal to half the quantity

wo = (gk)", (1)

Here g is the acceleration of the discharge boundary, and k is
the wave number of the perturbation harmonic, Expression (1) was
obtained in the well-known paper of Kruskal and Schwarzschild [5],
in which Rayleigh-Taylor instability of a semi-infinite plasma con-
tained by a magnetic field in a uniform gravitational field was stud-
ied in particular, In deriving (1) it was assumed that the plasma lies
above the horizontal plune y'= 0, and thar the accelerating gravity
force, the magnetic field and the wave vector of the surface disturb-
ance of the plasma have only the components By = "8 B, and
kyx = k. respectively.

It is of definite interest to find a direct solution to the problem
of the Rayleigh-Taylor Z-pinch instability in the constriction pro-
cess. The present paper solves this problem for one of the possible
Z-pinch models in the initial stage and, in particular, for the "snow-
plough” model [6].

We note that Z-pinch instability up to the moment of first con-
striction has been considered in [7] for various models, including the
“snow-plough. " However, in this paper only radial perturbations of
the plasma surface were allowed. Rayleigh-Taylor instability did not
appear in the calculations of [7] because of this restriction, although
other types of instability were investigated in the proper manner,

We shall therefore consider an infinite circular cylinder composed
of a perfectly conducting plasma at zero pressure. A current creating
an azimuthal magnetic field flows over the surface of the cylinder
along the z axis, The current surface is dragged towards the axis un-
der the influence of the Lorentz force, entraining the plasma and
gathering it into an infinitely thin surface layer. We shall consider
that the discharge boundary moves towards the axis with a constant
acceleration g, This assumption has been experimentally confirmed
for the initial stage of constriction [4]. The radius of the current
shell Ry (t) is associated with the initial radius of the cylinder R« =
= Ry (0) by the kinematic relation

’ZH.‘\,/’)

1 L2
Ro(‘):R*—‘Tg”:H*(i——Z;) (t*:K_g—j (2)

Here ta is the time in which the discharge boundary moving with
a constant acceleration g should have reached the axis.

The equation of motion of an element of surface area dAy =
= Rydedz has the form
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Here po () is the magnetic pressure on the surface of the plasma,
and M, (t) is the mass per unit length of the cylinder gathered up by
the boundary. (’learly,
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where p is the initial plasma density. Equation (3) gives
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when (2) and (4) are taken into account.

In accordance with the model we have chosen we shall consider
further only the initial stage of constriction when t <« t; according-
ly, we shall everywhere neglect quantities of the order of (t/t x;)z in
comparison with unity. Then (5) becomes

Whence
Bg = 2(3mp) gt ,

and consequently the total discharge current should be proportional
to time

I, (t) = Ya cByRy = (31p) Ya cg Ryt

Such an increase of current does, in fact. occur in the initial
stage of a discharge.

We shall now investigate the stability of the discharge shell. Let
8@, 2.8 - (. &, E,) be the small displacement of a particle
initially situated on the surface of the cylinder at the point-(¢, z);
n=: e, + n, aunit vector normal to the surface; and dA an element
of area of the perturbed surface of the cylinder. Then in an approxi-
mation which is linear with respect to the perturbation

ndA = [e, (Ro--§,)dp + E(p + dg, 2) —
—E(P, z)] X [e,dz +E(@, 2+ dz) —E(9, 2)] = (6)
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We find the perturbation of the magnetic field B, outside the
plasma from the equations

B; = Vy, Apr =0 (@)
and from the boundary condition for the total field 8 -- B, + B, on
the surface of the plasma
0=nB=~eB; +mBy. (8)
We shall consider that all quantities depend on ¢ and c in the
following manner
ei(m‘::sz). (9)
Then the solution of the equation AY; = 0, vanishing at infinity
and satisfying condition (8), is

imBoK,, (kr)
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where Kp(kr) is Macdonald's function. and the prime indicates dif-
ferentiation with respect to the argument. For the pressure of the
magnetic field on the perturbed surface of the cylinder we have

d
8ap = B2 (fy - £,) = By® (Ry) 4- 2By (7o) By (o) |- &, a7 Bo? (fe),
whence, using (7) and (10), we find
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where the second term obviously represents the pressure perturbation,
The equation of motion of the surface element having mass
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(Mp/2m)d pdz and area™ dA after pecturbation has the form
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Whence, taking into account the equation for the unperturbed motion
(3). and also equations (4), (6) and (11), we obtain in an approxima-
tion which is linear with respect to the perturbation
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Further, if we make use of Eq. (2) and the dependence of all quan-
tities on ¢ and z in the form given in (9), then for the new variable

=1t (13)

we obtain from (12) the system of equations
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In accordance with the remark made following Eq. (5), R,
places Ry everywhere, Taking (13) and the initial condition § (0) Ep,
into account, we seek q(t) in the form

sh ot
=t

(15)

Setting (15) in (14) gives the system of algebraic equations
2m2K \ 3¢ .
[mz <i + T kR.K,, } Eor + ﬁ; imgm -+ gglkim =0,
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A nontrivial solution of (16) exists if

o B g o= B o o

whence
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Thus Eq. (12) has a solution of the form

sh wt
§=8 amn

containing the unstable mode with
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Before examining the relationships obtained, we note that by
setting My = const we arrive at the problem solved in 8] on the in-
stability of a radially accelerated thin cylindrical plasma shell of
constant mass. In this case the unstable solution of Eq, (12) has the
form § = guem, where v is related to c(w) from (18) by 3% = WP,

The increase with time of the mass of the moving Z-pinch sheil
exerts a substantial influence on the character of the instability. It
follows from (18) that the unstable perturbation increases slowly for

*Taking into account the change of mass on perturbation compli-
cates the equations considerably.

wt < 1 and increases almost exponentially with an increment close
to w for wt » 1. In order to judge whether the perturbation which
arises for t = 0 will develop during the time under consideration
t « t,, we introduce the instability "increment” we, a quantity
which is the reciprocal of the time during which the initial perturba-
tion increases by a factor of e. For (17) this increment is we = 0.37 w.
Keeping this in mind, we shall make a further direct examination of
the quantity w given by Eq. (18).

we shall consider some particular cases. First, k = 0. m = 0,
Since

K (kRy) N
N SRy (kR m
Eq. (18) becomes
3g
—ZR {4 —2m -+ [(1 — 2m)2 + 4m2)"yy, (19)

It follows from this that the surface of the discharge for k = 0 is
unstable for all values of m, which is quite unexpected. It is true
that form' ~ 1 we have from Eq. (19)

i 2oL
R, T2’
i.e., the perturbations grow during a time of the- order of t, which
lies outside the scope of our trearment. However. if m > 1, then

3gm = m 1
m’z—R*—(VZ—l)~'t—*g>>E§,

so that shortwave perturbations increase over times which are small
compared with ct, . Moreaver, disturbances with m # 0 bend the
lines of force increasing the energy of the magnetic field, so that at
least such perturbations as are of sufficiently shorr wavelength should
be unstable. The contradiction which results is associated with the
neglect of the thickness of the moving discharge shell. As shown in
[8]. taking into account the finite thickness of the shell leads to the
appearance of short-wave perturbation instability. 1f we apply the re-
sult of [8] to our model, then for k = 0 only perturbations with m <
< R,/2a, will be unstable, where a is the thickness of the acceler-
ated sheet. Because of the inadequacy of the model we have chosen.
in the general case, whenk # 0 and m = 0, Eq. (18) displays instab-
ility for all values of k and m.

We shall further consider pinch-type instabilities for which m = 0,
k = 0. From the point of view of energy these pinches are the most
dangerous, since they bend the lines of force of the magnetic field.
It follows from Eq. (18) that in this case

We shall determine the part played by the various terms in the
expression obtained. If we allow only radial displacement of the
particles in the surface of the plasma, i.e., & = (§;, 0, 0), then in-
stead of system (14) there will be only one equation

. 38
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and correspondingly instead of (20)

Thus the R,-terms are associated with the instability of purely ra-
dial perturbations and their presence in (20) expresses the well-known
fact that the magnetic pressure on the surface of a bady of revolution
with a longitudinal current is greater where the radius is less. Since
w; ~1/t,. inthe initial stage of discharge treated ere an instability
of this type is of no significance.

On the other hand, for R, => ®, on passing to a plasma with a
flat boundary, (20) becomes

@2 = 3¢k, (21)

Using expression (1) for the increment of the Rayleigh-Taylor in-
stability of a semi-infinite plasma in a gravitational field, we write
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(21) in the form
© = 3w?. (22)

Hence we may conclude that the term with k in (20). due to the
displacements of particles along the surface of the plasma, corres-
ponds to the Rayleigh-Taylor instability. For sufficiently short-wave
perturbations, when kR« > 1, we have (21) and (22) instead of (20)
and the "increment" we have introduced we = 0, 64ws.

Here the time for development of the instability is of the order of

1 Iy

—6‘=W<t*.

Consequently, in the "snow-plough” model the Rayleigh-Taylor
Z-pinch instability may play a significant part at the constriction
stage.
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